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ABSTRACT
Several methods of transition Prediction by linear

stability analysis are compared. The spectral stability

analysis code SALLY is used to analyze flows over laminar

flow control wings. It js shown that transition prediction

by the eénvelope r -thod and a new modified wave pPacket method
are comparable ip reliability but that the envelope m.thod

1S more efficient Computationally.
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NOMENCLATURE

maximum disturbance amplitude
Chebyshev coefficients

wing chord

dimensional frequency

wave number vector

algebraic mapping parameter

N-factor = in A/Ao

*
displacement thickness Reynclds number, Uxé /v,

chord Reynolds number, U_ c/v,,

arc length aiong an arbitrary path on the wing
Chebyshev polynomial

time

unperturbed x-velocity in the boundary layer
potential flow vector at edge of boundary layer
x-component of U

incoming free stream velocity

group velocity vector

perturbation velocity in the y-direction
unperturbed z-velocity in the boundary layer
mapped coordinate normal to wina surface
coordinate in the direction of the normal chord
coordinate normal to the wing surface

coordinate along the wing span

ii
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x~-wave number
angle of attack

Z-wave number

frequency (complex)

frequency (real)

displacement thickness

wave length

kinematic viscosity

wing sweep angle

angle formed by the wave number vector with the x-axis

angle formed by the group velocity vector with the x-axis
angle formed by the pitential flow vector with the x-axis
eigenfunction; de“ined in Eq.

adjoint of the <%

asnfunction

114

(3).
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SECTION 1 - INTRODUCTION

In this report several methods of transition prediction

using linear stability analysis are compared.

ible linear stability computer code SALLY is used in various
ways to study three-dimensional boundary layer flow over

laminar flow control (LFC) wings. Here we compare the so

called envelope method1 with wave-packet methodsz, to predict

transition. We conclude that the envelope method is at least

as reliable as the more complicated and less efficient wave
packet method.

Consider the stability of three dimensional laminar flow
over swept wings with sweep angle 6. The coordinate system
used on the wing is depicted in Fig. 1. The x-axis is in the
direction of the normal chord, the y-axis is normal to the
surface of the wing while the z-axis is along its span.

Neglecting the curvature of the wing surface, compressi-
bility effects, and non-parallel flow effects, linear distur-
bances satisfy the Orr-Sommerfeld equation

2

(—95 - a2 -~ 82)2¢
dy
2 2 2
= iR { (aU + BW - w) [ 9—3 - a2 - 62]¢ - (a§~% + B§—§)®} (1)
dy dy dy

1~1
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with the boundary conditions
$(0) = g% (0) = 0; ¢(~) bounded. (2)

Here the perturbation velocity in the y-direction is assumed
to be of the form

v' = Re [¢ (Y) ei (u)ﬁBZ-wt) ] ,

(3)

U(y) and W(y) are the (unperturbed) laminar boundary
layer velocities in the x- and z-directions, respectively,
and PR is the Reynolds number. It .s assumed that all

variables are non-dimensionalized with boundary layer

scaling.
Equations (1) - (3) constitute an eigenvalue
problem for the frequency w and wavanumbers a,8 .

For given Reynolds number R, this eigenvalue prcbiem

provides a complex dispersion relation of the form
o = wla,B) (4)

relating the complex parameters a,B and w.




Semi-empirical methods to predict transition on
LFC wings are based on tracing the evolution of modes
across the wing% An appropriate N-factor for transition
correlation is defined as the (locgarithm of the) total
growth factor across the wing (see below). A good transition
predictor is one for which transition occurs at nearly constant
N €or a wide variety of wings and flow conditions.

Por natural transition, disturbances of all frequencies
are present on the wing surface. In this case, there are
many optional ways to compute N factors. The first choice
is between temporal and spatial stability theory. In
temporal theory, a and B are real while w is complex;
the mode grows in time if Im(w) > 0, but the mode does
not grow in space. An N-factor for transition correlation

may be defined as

s
N = I Im(w)/|Re (v _)|ds (3)
s g

0
where ;g =(3w/3a, dw/38) is the (complex) group velocity

and s is the arclength along an appropriate curve on the wing.
The N-factor (5) is not fully defined until a prescription
is given for singling out a specific mode at each position
on the wing and for defining a specific curve on which to

integrate. We shall return to these questions in Sec. 2.

in spatial stability theory, ® is real but a and/or
8 may be complex. Again, there is arbitrariness in the
definition of an appropriate N-factor because of the variety

of excitabile modes on the wing.
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SECTION 2-
WAVE PROPAGATION IN BOUNDARY LAYERS

The complex eigenvalue relation (4) provides
two real relations among the three complex quantities
a,B, and w. In temporal stability theory, the
requirements that a and g be real provide two more
conditions so there remain two arbitrary parameters
among Re(a), Re(B8), Re(w), and Im(w).

There are several ways to remove this arbitrariness
in the computation of the growth factors N. In the
envelope methodl, fm{w) is maximized with respect
to a at fixed Re w [which then determines «,8
and w uniquely at each point on the wing] and the
curve in (5) is defined to be everywhere tangent

-
to Re(vg).

With spatial stability theory, there remain
three independent real parameters among a,8 and
Re(w) once the eigenvalue condition (4) is satisfied.
One possibility is to require that the direction of
most rapid growth, which is parallel to the vector

(-Im(a), -Im(B)}, be parallel to Re(3g) and that
the resulting value of the most rapid growth rate
be maximized with respect to the remaining two
independent parameters.

Alternatively, it is possible to use wave

2-1
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packet theory to remove the arbitrariness in the definition
of N-factors. For a conservative dynamical system,
kinematic wave theory implies that a wave packet

propagates in physical and wavevector space accordingy

to the Hamilton-Jacobi equations

ox - (6)
Qo -2 (8)
K- (9)

2
Nayfeh considered the extension of Egs. (6)-
(9) to non-conservative systems where o,8, and  can

.be complex. Then, W, and w may also be complex.

8

For a physical solution with real x,z, and t to

éxist, (6) and (7) 1imply that the group velocity

(ﬁa,mB) must be real. Nayfeh proposed the computation

of ‘wave packet solutions determined by the six independent
conditions: (i) the eigenvalue condition (4);

(ii) Im wy= Imwy= 0; (iii) Re w fixed; (iv)

B

Re B fixed; and (v) dx/dt =0y dz/dt = o Under

_ B’
these conditions the N-factor is determined by

2~2




8= [ [-w,Im(a) -w, Im(8) +Im(u) Jat (107
“0

Finally we study a modified non-conservative wave

packet formulation in which «,8, and w are
determined by: (i) the eigenvalue condition (4);
(ii) Im w = Im wg= 0; (iii) Rew fixed with Imw= 0;
and (iv) dx/dt = W, s d z/dt = wg - The motivation for

these latter conditions is simply that laminar flow
over a LFC wing may be assumed steady so a wave packet
should propagate at fixed real frequency. The N-
factor is given by (10) with Im(w) = 0.
Calculations made with Nayfeh's formulation of
the wave packet equations were extremely sensitive
and gave transition prediction at highly variable and
unpredictable values of the N factor. Therefore, we
report in Sec. 4 only the results obtained by our
modified wave packet formulation in which the condition

Re B fixed is dropped in favor of Imw= 0.
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SECTION 3 - NUMERICAL METHOD

In the computer code SALLYl, Egs. (1) - (2) arz solved

using a spectral method based on Chebyshev polynomialss. The
boundary layer direction y 0 < y < », is mapped into the finite

interval -1 < w < 1 by the algebraic mapping

w=2ﬁ-§—1 (11)

and $(y) is approximated as the finite Chebyshev folynomial

series

ply) =

n

a, Tn(w) (12)

N~ =

0
The resulting alcebraic eigenvalue problem is solved globally
(if a quess for the eigenvalue is not available) by a generalized
OR algorithm or locally (if a good guess is available) by inverse
Rayleigh iterations. The resulting scheme is very efficient

and accurate.

Group velocity (§g = é%) can be calculated using the adjoint
ak
eigenfunction o. the Orr-Sommerfeld equation. Thus if the Orr-

Sommer feld equation is written as
L(k, %, w(kK)) ¢ = 0 (13)

then the differentiation with respect %o wave number k gives

9.;11¢+l[-‘3—‘f¢>+1,i$=0 (14)
ok Jw 3k 3k

B
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Taking the inner product of (14) with the adjoint n of

the eigenfunction ¢ gives

(n,a—f $)
=- %k (15) t

oL
(n' ’5}3@)

@ |
W#lE

In order to correlate transition we calculate N-factor for
a fixed real frequency and repeat the calculations for several

other frequencies to find the most dangerous mode. The eigen-

value solver in SALLYl searches for the eigenvalue w given o

and B. So we iterate on Re a, Im a, Re B and Im B such that ¢

the conditions described above for modified wave packet method
are satisfied. This is achieved usually in three iterations.

Following equations are employed in this iterative process.

) T — 91T -
Imn w Re o Iim o Re o Re (a-a ) -In w
ao oo af aB o) a
R R - -1
Im Way e wo, Im Wop Re wgo Im(a ao) m wo
= (16)
Re w -Im w Re wo -Im wg Re(B-BO) Re(fi-w)
L—Im W, Re W, Im wo Re mB__ L}m(e—eolu LrIm(m)__
The properties of the laminar boundary layer profiles
required to solve (1) - (2) are obtained using a compressible

boundary iayer code for swept tapered wings developed by Kaups

and Cebecil.
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SECTION 4-
RESULTS

Burrows7 has reported flight transition data
taken at Cranfield for a large, untapered, 45° swept
half wing mounted as a dorsal fin upon the mid-upper
fuselage of ar Avro lLancaster airplane. The airfoil
section was made-up of two semi-ellipses, one of which
constituted a faired trailing edge and the oth r
corresponding to the leading edge of a 10 percent
thick airfoil, with effective chord of 19.83 feet,
heasured in the free stream direction. The location
oY the bec¢inning of transition in the Craufi:ld data
was estimated as given in Ref. 8. Two of the Cranfield
flight tests were chosen for correlating transition
using wave packet theory.

In the first test case, calculations were made
for a chord Reynolds number of 11.7 XI06 and -2°
angle of attack. In this flow, transition begins at
x/c = 5.5%. A maximum N factor of 7.6 was obtained
at a frequency of 1250 Hz both with the envelope
method and the modified wave packet method.

The predicted variation of the N factor up
to the transition locsiion was almost identical for the
envelope method and the modified wave packet method.

We also compute the solution of the conservative wave
packet equations (6) - (5} sn which only the real

parts of equations (6) - (/) are taken while (8)-(9)




e e e

are solved in their full complex form. The resulting
N factor at transition is 5.2. ‘he variation of N
fartor with x/c for the varicus methods is plotted
in Fig. 2.

Wave angle, wave length and the direction of
the gronp velocity as predicted by the envelope and
wave packet methods are given in Figs. 3 - 5. Although
the results are qualitatively similar, there is
appreciable quantitative difference in these parameters
at the transition location. It is surprising that the
N factor calculated by the envelope arnd modified wave
packet methods are the same.

In the second test case, the anyle of attack
of the wing was changed to zero. 1In this case,
transition occurred experimentally at x/¢ = 7%.

The envelope method gave an N factor of 10.8 at

a fregquency of 1000 Hz. The wave ﬁacket method gave
a maximum N factor of 10.5 at a frequency of

1200 Hz, which is close to the prediction of the
envelope method. The variation of N factor with

x/¢ is plotted in Fig. 6. The predictions of the
conservative wave packet approximation and a fixed
wavelength, fixed frequency integration are also
plotted in this figure. The conservative wave packet
approximation gave an N factor at transition of

8.6 rather than 10.5. '

4-2
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Figure 7 shows the influence of frequency
on N factor at transition for the wing as
predicted by the wave packet theory. Wave angle,
wave length ang direction of the group velocity
for this particular wing are shown in Figs. 8-10.
Again there is substantial quantitative difference in

the predictions of the two methods.
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SECTION 5 - CONCLUSIONS

Calculations were made for a Cranfield 45° swept wing
with Rec = 11.7 x 106 using a modified wave packet method and
the envelope method. Both methods gave an N factor of 7.6 at

transition locaticn for an angle of attack, Ay = - 2°. For

a, = 00, the envelope and modified wave packet methods gave N
factors of 10.8 and 10.5, respectively. Since it may be argued
that the wave packet method is physically more relevant for pre-
dicting transition in three dimensional boundary layers, it was
initially hoped that the wave packet method might give more con-
sistent transition N factors. However, the results show that
the wave packet method provides N factors which are at best as
consistent as those of envelope method. Since the wave packet
method is at least 3 times as expensive to use as the envelope
method, the latter is recommended for engineering design cal-
culations.

We would like to thank D. M. Bushnell and J. N. Hefner for

helpful discussions. This work was supported by the National

Aeronautics and Space Administration under Contract NAS1-15604.
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FIGURE CAPTIONS

Figure 1. A plot of the coordinate system on a swept
wing.

Figure 2. A plot of N versus percent of chord
x/c for various methods applied to a swept wing
of an Avro Lancaster airplane at -2° angle of
attack. Solid curve: modified wave packet method
and envelope method at £ = 1250 Hz which gives nearly
the maximum N at the transition point. Datshed
curve: result of integrating equations (6) - {9)
across the wing with (6} and (7) replaced by
their real parts. The curves are plotted from the
beginning of the unstable flow region until the
transition point at x/c = 5.5%.

Figure 3. A plot of wave propagation angle versus
x/c for the same flow as in Figuge 2.

Figure 4. A plot of wavelength versus x/c for the

¢

same flow as in Figure 2.

Figqure 5. A plot of the direction of the group velocity

for the same flow as in Figure 2.
Figure 6. Same as Fig. 2 except for the wing at 0°
angle of attack. 1In addition to the results of the

wave packet methods and envelope method, the N
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factor obtained by integrating a fixed

wavelength, fixed frequency mode across the wing is
given. Here N is given by (5) and the mode is
determined by the six real conditions: (i) F = (4);
(ii) Ima= ImB= 0; (iii) A/e = 0.001; ( .

Re w= 750 Hz.

Figure 7. Variation of N at transition versus

frequency obtained using the modified wave

packet method for the same flow as in Figure 6.

Figure 8. A plot of wave propagation angle versus

x/c for the same flow as in Figure 6.

Figure 9. A plot of wavelength versus x/¢c for the

same flow as in Figure 6.

Figure 10. A plet of the direction of the group

velocity for the same flow as in Figure 6.
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WAVE PACKET AND
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